# Муниципальное образование город Краснодар муниципальное автономное общеобразовательное учреждение муниципального образования город Краснодар средняя общеобразовательная школа № 99

### **УТВЕРЖДЕНО**

| решением педа | агогического совета |
|---------------|---------------------|
| от 30.08.2017 | года протокол № 1   |
| Председатель  | Н. Б. Гаврилюк      |

#### РАБОЧАЯ ПРОГРАММА

По физике

Уровень образования: основное общее образование, 10-11 класс.

Количество часов: 68

Учитель: Буцун Екатерина Викторовна.

Программа разработана в соответствии с федеральным государственным образовательным стандартом основного общего образования.

Программа составлена на основе УМК А.В. Перышкина, Е.М. Гутник, на основе примерной рабочей программы по физике для 7-9 классов автора Н.В. Филанович, Е.М. Гутник - М.: Дрофа, 2017-76 стр.

#### 1. Планируемые результаты освоения курса.

Выпускник научится:

соблюдать правила безопасности и охраны труда при работе с учебным и лабораторным оборудованием;

понимать смысл основных физических терминов: физическое тело, физическое явление, физическая величина, единицы измерения;

распознавать проблемы, которые можно решить при помощи физических методов; анализировать отдельные этапы проведения исследований и интерпретировать результаты наблюдений и опытов;

ставить опыты по исследованию физических явлений или физических свойств тел без использования прямых измерений; при этом формулировать проблему/задачу учебного эксперимента; собирать установку из предложенного оборудования; проводить опыт и формулировать выводы.

Примечание. При проведении исследования физических явлений измерительные приборы используются лишь как датчики измерения физических величин. Записи показаний прямых измерений в этом случае не требуется.

понимать роль эксперимента в получении научной информации;

проводить прямые измерения физических величин: время, расстояние, масса тела, объем, сила, температура, атмосферное давление, влажность воздуха, напряжение, сила тока, радиационный фон (с использованием дозиметра); при этом выбирать оптимальный способ измерения и использовать простейшие методы оценки погрешностей измерений.

Примечание. Любая учебная программа должна обеспечивать овладение прямыми измерениями всех перечисленных физических величин.

проводить исследование зависимостей физических величин с использованием прямых измерений: при этом конструировать установку, фиксировать результаты полученной зависимости физических величин в виде таблиц и графиков, делать выводы по результатам исследования;

проводить косвенные измерения физических величин: при выполнении измерений собирать экспериментальную установку, следуя предложенной инструкции, вычислять значение величины и анализировать полученные результаты с учетом заданной точности измерений;

анализировать ситуации практико-ориентированного характера, узнавать в них проявление изученных физических явлений или закономерностей и применять имеющиеся знания для их объяснения;

понимать принципы действия машин, приборов и технических устройств, условия их безопасного использования в повседневной жизни;

использовать при выполнении учебных задач научно-популярную литературу о физических явлениях, справочные материалы, ресурсы Интернет.

Выпускник получит возможность научиться:

осознавать ценность научных исследований, роль физики в расширении представлений об окружающем мире и ее вклад в улучшение качества жизни;

использовать приемы построения физических моделей, поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;

сравнивать точность измерения физических величин по величине их относительной погрешности при проведении прямых измерений;

самостоятельно проводить косвенные измерения и исследования физических величин с использованием различных способов измерения физических величин, выбирать средства измерения с учетом необходимой точности измерений, обосновывать выбор способа измерения,

адекватного поставленной задаче, проводить оценку достоверности полученных результатов;

воспринимать информацию физического содержания в научно-популярной литературе и средствах массовой информации, критически оценивать полученную информацию, анализируя ее содержание и данные об источнике информации;

создавать собственные письменные и устные сообщения о физических явлениях на основе нескольких источников информации, сопровождать выступление презентацией, учитывая особенности аудитории сверстников.

Механические явления

Выпускник научится:

распознавать механические явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: равномерное и неравномерное движение, равномерное и равноускоренное прямолинейное движение, относительность механического движения, свободное падение тел, равномерное движение по окружности, инерция, взаимодействие тел, реактивное движение, передача давления твердыми телами, жидкостями и газами, атмосферное давление, плавание тел, равновесие твердых тел, имеющих закрепленную ось вращения, колебательное движение, резонанс, волновое движение (звук);

описывать изученные свойства тел и механические явления, используя физические величины: путь, перемещение, скорость, ускорение, период обращения, масса тела, плотность вещества, сила (сила тяжести, сила упругости, сила трения), давление, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД при совершении работы с использованием простого механизма, сила трения, амплитуда, период и частота колебаний, длина волны и скорость ее распространения; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;

анализировать свойства тел, механические явления и процессы, используя физические законы: закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил (нахождение равнодействующей силы), І, ІІ и ІІІ законы Ньютона, закон сохранения импульса, закон Гука, закон Паскаля, закон Архимеда; при этом различать словесную формулировку закона и его математическое выражение;

различать основные признаки изученных физических моделей: материальная точка, инерциальная система отсчета;

решать задачи, используя физические законы (закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил, I, II и III законы Ньютона, закон сохранения импульса, закон Гука, закон Паскаля, закон Архимеда) и формулы, связывающие физические величины (путь, скорость, ускорение, масса тела, плотность вещества, сила, давление, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД простого механизма, сила трения скольжения, коэффициент трения, амплитуда, период и частота колебаний, длина волны и скорость ее распространения): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.

Выпускник получит возможность научиться:

использовать знания о механических явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры практического использования физических знаний о механических явлениях и физических законах; примеры использования возобновляемых источников энергии;

экологических последствий исследования космического пространств;

различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения механической энергии, закон сохранения импульса, закон всемирного тяготения) и ограниченность использования частных законов (закон Гука, Архимеда и др.);

находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний по механике с использованием математического аппарата, так и при помощи методов оценки.

Тепловые явления

Выпускник научится:

распознавать тепловые явления и объяснять на базе имеющихся знаний основные свойства или условия протекания этих явлений: диффузия, изменение объема тел при нагревании (охлаждении), большая сжимаемость газов, малая сжимаемость жидкостей и твердых тел; тепловое равновесие, испарение, конденсация, плавление, кристаллизация, кипение, влажность воздуха, различные способы теплопередачи (теплопроводность, конвекция, излучение), агрегатные состояния вещества, поглощение энергии при испарении жидкости и выделение ее при конденсации пара, зависимость температуры кипения от давления;

описывать изученные свойства тел и тепловые явления, используя физические величины: количество теплоты, внутренняя энергия, температура, удельная теплоемкость вещества, удельная теплота плавления, удельная теплота парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;

анализировать свойства тел, тепловые явления и процессы, используя основные положения атомно-молекулярного учения о строении вещества и закон сохранения энергии;

различать основные признаки изученных физических моделей строения газов, жидкостей и твердых тел;

приводить примеры практического использования физических знаний о тепловых явлениях;

решать задачи, используя закон сохранения энергии в тепловых процессах и формулы, связывающие физические величины (количество теплоты, температура, удельная теплоемкость вещества, удельная теплота плавления, удельная теплота парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.

Выпускник получит возможность научиться:

использовать знания о тепловых явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры экологических последствий работы двигателей внутреннего сгорания, тепловых и гидроэлектростанций;

различать границы применимости физических законов, понимать всеобщий характер фундаментальных физических законов (закон сохранения энергии в тепловых процессах) и ограниченность использования частных законов;

находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний о тепловых явлениях с использованием математического аппарата,

так и при помощи методов оценки.

Электрические и магнитные явления

Выпускник научится:

распознавать электромагнитные явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: электризация тел, взаимодействие зарядов, электрический ток и его действия (тепловое, химическое, магнитное), взаимодействие магнитов, электромагнитная индукция, действие магнитного поля на проводник с током и на движущуюся заряженную частицу, действие электрического поля на заряженную частицу, электромагнитные волны, прямолинейное распространение света, отражение и преломление света, дисперсия света.

составлять схемы электрических цепей с последовательным и параллельным соединением элементов, различая условные обозначения элементов электрических цепей (источник тока, ключ, резистор, реостат, лампочка, амперметр, вольтметр).

использовать оптические схемы для построения изображений в плоском зеркале и собирающей линзе.

описывать изученные свойства тел и электромагнитные явления, используя физические величины: электрический заряд, сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа электрического поля, мощность тока, фокусное расстояние и оптическая сила линзы, скорость электромагнитных волн, длина волны и частота света; при описании верно трактовать физический смысл используемых величин, их обозначения и единицы измерения; находить формулы, связывающие данную физическую величину с другими величинами.

анализировать свойства тел, электромагнитные явления и процессы, используя физические законы: закон сохранения электрического заряда, закон Ома для участка цепи, закон Джоуля-Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света; при этом различать словесную формулировку закона и его математическое выражение.

приводить примеры практического использования физических знаний о электромагнитных явлениях

решать задачи, используя физические законы (закон Ома для участка цепи, закон Джоуля-Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света) и формулы, связывающие физические величины (сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа электрического поля, мощность тока, фокусное расстояние и оптическая сила линзы, скорость электромагнитных волн, длина волны и частота света, формулы расчета электрического сопротивления при последовательном и параллельном соединении проводников): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.

Выпускник получит возможность научиться:

использовать знания об электромагнитных явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры влияния электромагнитных излучений на живые организмы;

различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения электрического заряда) и ограниченность использования частных законов (закон Ома для участка цепи, закон Джоуля-Ленца и др.);

использовать приемы построения физических моделей, поиска и формулировки

доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;

находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний об электромагнитных явлениях с использованием математического аппарата, так и при помощи методов оценки.

Квантовые явления

Выпускник научится:

распознавать квантовые явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: естественная и искусственная радиоактивность,  $\alpha$ -,  $\beta$ - и  $\gamma$ -излучения, возникновение линейчатого спектра излучения атома;

описывать изученные квантовые явления, используя физические величины: массовое число, зарядовое число, период полураспада, энергия фотонов; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения; находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;

анализировать квантовые явления, используя физические законы и постулаты: закон сохранения энергии, закон сохранения электрического заряда, закон сохранения массового числа, закономерности излучения и поглощения света атомом, при этом различать словесную формулировку закона и его математическое выражение;

различать основные признаки планетарной модели атома, нуклонной модели атомного ядра;

приводить примеры проявления в природе и практического использования радиоактивности, ядерных и термоядерных реакций, спектрального анализа.

Выпускник получит возможность научиться:

использовать полученные знания в повседневной жизни при обращении с приборами и техническими устройствами (счетчик ионизирующих частиц, дозиметр), для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;

соотносить энергию связи атомных ядер с дефектом массы;

приводить примеры влияния радиоактивных излучений на живые организмы; понимать принцип действия дозиметра и различать условия его использования;

понимать экологические проблемы, возникающие при использовании атомных электростанций, и пути решения этих проблем, перспективы использования управляемого термоядерного синтеза.

Элементы астрономии

Выпускник научится:

указывать названия планет Солнечной системы; различать основные признаки суточного вращения звездного неба, движения Луны, Солнца и планет относительно звезд;

понимать различия между гелиоцентрической и геоцентрической системами мира;

Выпускник получит возможность научиться:

указывать общие свойства и отличия планет земной группы и планет-гигантов; малых тел Солнечной системы и больших планет; пользоваться картой звездного неба при наблюдениях звездного неба;

различать основные характеристики звезд (размер, цвет, температура) соотносить цвет звезды с ее температурой;

различать гипотезы о происхождении Солнечной системы

Личностными результатами обучения физике в основной школе являются:

1. Российская гражданская идентичность (патриотизм, уважение к Отечеству, к прошлому и настоящему многонационального народа России, чувство ответственности и долга перед Родиной, идентификация себя в качестве гражданина России, субъективная значимость

использования русского языка и языков народов России, осознание и ощущение личностной сопричастности судьбе российского народа). Осознание этнической принадлежности, знание истории, языка, культуры своего народа, своего края, основ культурного наследия народов России и человечества (идентичность человека с российской многонациональной культурой, сопричастность истории народов и государств, находившихся на территории современной России); интериоризация гуманистических, демократических и традиционных ценностей многонационального российского общества. Осознанное, уважительное и доброжелательное отношение к истории, культуре, религии, традициям, языкам, ценностям народов России и народов мира.

- 2. Готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию; готовность и способность к осознанному выбору и построению дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений, с учетом устойчивых познавательных интересов.
- 3. Развитое моральное сознание и компетентность в решении моральных проблем на основе личностного выбора, формирование нравственных чувств и нравственного поведения, осознанного и ответственного отношения к собственным поступкам (способность самосовершенствованию; веротерпимость, уважительное религиозным чувствам, взглядам людей или их отсутствию; знание основных норм морали, нравственных, духовных идеалов, хранимых в культурных традициях народов России, основе к сознательному самоограничению в поступках, поведении, расточительном потребительстве; сформированность представлений об основах светской этики, культуры традиционных религий, их роли в развитии культуры и истории России и человечества, в становлении гражданского общества и российской государственности; понимание значения нравственности, веры и религии в жизни человека, семьи и общества). Сформированность ответственного отношения к учению; уважительного отношения к труду, наличие опыта участия в социально значимом труде. Осознание значения семьи в жизни общества, принятие ценности семейной жизни, уважительное и заботливое отношение к членам своей семьи.
- 4. Сформированность целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики, учитывающего социальное, культурное, языковое, духовное многообразие современного мира.
- 5. Осознанное, уважительное и доброжелательное отношение к другому человеку, его мнению, мировоззрению, культуре, языку, вере, гражданской позиции. Готовность и способность вести диалог с другими людьми и достигать в нем взаимопонимания (идентификация себя как полноправного субъекта общения, готовность к конструированию образа партнера по диалогу, готовность к конструированию образа допустимых способов диалога, готовность к конструированию процесса диалога как конвенционирования интересов, процедур, готовность и способность к ведению переговоров).
- 6. Освоенность социальных норм, правил поведения, ролей и форм социальной жизни в группах и сообществах. Участие в школьном самоуправлении и общественной жизни в пределах возрастных компетенций с учетом региональных, этнокультурных, социальных и экономических особенностей (формирование готовности к участию в процессе упорядочения социальных связей и отношений, в которые включены и которые формируют сами учащиеся; включенность в непосредственное гражданское участие, готовность участвовать в жизнедеятельности подросткового общественного объединения, продуктивно взаимодействующего с социальной средой и социальными институтами; идентификация себя в качестве субъекта социальных сфере компетентностей организаторской преобразований, освоение В деятельности; интериоризация ценностей созидательного отношения к окружающей действительности, ценностей социального творчества, ценности продуктивной организации совместной деятельности, самореализации в группе и организации, ценности «другого» как равноправного партнера, формирование компетенций анализа, проектирования, организации деятельности, рефлексии изменений, способов взаимовыгодного сотрудничества, способов реализации собственного лидерского потенциала).

- 7. Сформированность ценности здорового и безопасного об-раза жизни; интериоризация правил индивидуального и коллективного безопасного поведения в чрезвычайных ситуациях, угрожающих жизни и здоровью людей, правил поведения на транспорте и на дорогах.
- 8. Развитость эстетического сознания через освоение художественного наследия народов России и мира, творческой деятельности эстетического характера (способность понимать художественные произведения, отражающие разные этнокультурные традиции; сформированность основ художественной культуры обучающихся как части их общей духовной культуры, как особого способа познания жизни и средства организации общения; эстетическое, эмоционально-ценностное видение окружающего мира; способность к эмоционально-ценностному освоению мира, самовыражению и ориентации в художествен-ном и нравственном пространстве культуры; уважение к истории культуры своего Отечества, выраженной в том числе в понимании красоты человека; потребность в общении с художественными произведениями, сформированность активного отношения к традициям художественной культуры как смысловой, эстетической и личностнозначимой ценности).
- 9. Сформированность основ экологической культуры, соответствующей современному уровню экологического мышления, наличие опыта экологически ориентированной рефлексивно-оценочной и практической деятельности в жизненных ситуациях (готовность к исследованию природы, к занятиям сельскохозяйственным трудом, к художественно-эстетическому отражению природы, к занятиям туризмом, в том числе экотуризмом, к осуществлению природоохранной деятель-ности).

**Метапредметные результаты** обучения физике в основной школе включают межпредметные понятия и универсальные учебные действия (регулятивные, познавательные, коммуникативные).

#### Межпредметные понятия

Условием формирования межпредметных понятий, таких, как система, факт, закономерность, феномен, анализ, синтез является овладение обучающимися основами читательской компетенции, приобретение навыков работы с информацией, участие в проектной деятельности. В основной школ продолжается работа по формированию и развитию основ читательской компетенции. Обучающиеся овладеют чтением как средством осуществления своих дальнейших планов: продолжения образования и самообразования, осознанного планирования своего актуального и перспективного круга чтения, в том числе досугового, подготовки к трудовой и социальной деятельности. У выпускников будет сформирована потребность в систематическом чтении как средстве познания мира и себя в этом мире, гармонизации отношений человека и общества, создании образа «потребного будущего». При изучении физики обучающиеся усовершенствуют приобретенные навыки работы с информациейи пополнят их. смогут работать с текстами, преобразовывать и интерпретировать содержащуюся в них информацию, в том числе:

•систематизировать, сопоставлять, анализировать, обобщать и интерпретировать информацию, содержащуюся в готовых информационных объектах;

•выделять главную и избыточную информацию, выполнять смысловое свертывание выделенных фактов, мыслей; представлять информацию в сжатой словесной форме (в виде

плана или тезисов) и в наглядно-символической форме (в виде таблиц, графических схем и диаграмм, карт понятий — концептуальных диаграмм, опорных конспектов);

•заполнять и дополнять таблицы, схемы, диаграммы, тексты. В ходе изучения физики обучающиеся приобретут опыт проектной деятельностикак особой формы учебной работы,

способствующей воспитанию самостоятельности, инициативности, ответственности, повышению мотивации и эффективности учебной деятельности; в ходе реализации исходного замысла на практическом уровне овладеют умением выбирать адекватные стоящей задаче средства, принимать решения, в том числе и в ситуациях неопределенности. Они получат возможность развить способность к разработке нескольких вариантов решений, к поиску нестандартных решений, поиску и осуществлению наиболее приемлемого решения.

#### Регулятивные УУД

- 1. Умение самостоятельно определять цели обучения, ставить и формулировать новые задачи в учебе и познавательной деятельности, развивать мотивы и интересы своей познавательной деятельности. Обучающийся сможет:
  - •анализировать существующие и планировать будущие образовательные результаты;
  - •идентифицировать собственные проблемы и определять главную проблему;
- •выдвигать версии решения проблемы, формулировать гипотезы, предвосхищать конечный результат;
- •ставить цель деятельности на основе определенной проблемы и существующих возможностей;
  - •формулировать учебные задачи как шаги достижения поставленной цели деятельности;
- •обосновывать целевые ориентиры и приоритеты ссылка-ми на ценности, указывая и обосновывая логическую последовательность шагов.
- 2. Умение самостоятельно планировать пути достижения целей, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач. Обучающийся сможет:
- •определять необходимые действие(я) в соответствии с учебной и познавательной задачей и составлять алгоритм их выполнения;
- •обосновывать и осуществлять выбор наиболее эффективных способов решения учебных и познавательных задач;
- •определять/находить, в том числе из предложенных вариантов, условия для выполнения учебной и познавательной задачи;
- •выстраивать жизненные планы на краткосрочное будущее (заявлять целевые ориентиры, ставить адекватные им задачи и предлагать действия, указывая и обосновывая логическую последовательность шагов);
- •выбирать из предложенных вариантов и самостоятельно искать средства/ресурсы для решения задачи/достижения цели;
  - •составлять план решения проблемы (выполнения проекта, проведения исследования);
  - •определять потенциальные затруднения при решении
  - учебной и познавательной задачи и находить средства для их устранения;
  - •описывать свой опыт, оформляя его для передачи другим
  - людям в виде технологии решения практических задач определенного класса;
  - •планировать и корректировать свою индивидуальную образовательную траекторию.
- 3. Умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий
- в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией.

Обучающийся сможет:

- •определять совместно с педагогом и сверстниками критерии планируемых результатов и критерии оценки своей учеб-ной деятельности;
  - •систематизировать (в том числе выбирать приоритетные)
  - критерии планируемых результатов и оценки своей деятельности;
- •отбирать инструменты для оценивания своей деятельности, осуществлять самоконтроль своей деятельности в рамках предложенных условий и требований;
- •оценивать свою деятельность, аргументируя причины достижения или отсутствия планируемого результата;
- •находить достаточные средства для выполнения учебных действий в изменяющейся ситуации и/или при отсутствии планируемого результата;
- •работая по своему плану, вносить коррективы в текущую деятельность на основе анализа изменений ситуации для получения запланированных характеристик продукта/результата;
- •устанавливать связь между полученными характеристиками продукта и характеристиками процесса деятельности и по завершении деятельности предлагать изменение характеристик процесса для получения улучшенных характеристик продукта;

- •сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно.
- 4. Умение оценивать правильность выполнения учебной задачи, собственные возможности ее решения. Обучающийся сможет:
  - •определять критерии правильности (корректности) выполнения учебной задачи;
- •анализировать и обосновывать применение соответствующего инструментария для выполнения учебной задачи;
- •свободно пользоваться выработанными критериями оценки и самооценки, исходя из цели и имеющихся средств, различая результат и способы действий;
- •оценивать продукт своей деятельности по заданным и/или самостоятельно определенным критериям в соответствии с целью деятельности;
  - •обосновывать достижимость цели выбранным способом на основе оценки своих внутренних ресурсов и доступных внешних ресурсов;
  - •фиксировать и анализировать динамику собственных об-разовательных результатов.
  - 5. Владение основами самоконтроля, самооценки, принятия
- решений и осуществления осознанного выбора в учебной и по-знавательной деятельности. Обучающийся сможет:
- •наблюдать и анализировать собственную учебную и по-знавательную деятельность и деятельность других обучающих-ся в процессе взаимопроверки;
- •соотносить реальные и планируемые результаты индиви-дуальной образовательной деятельности и делать выводы;
  - •принимать решение в учебной ситуации и нести за него ответственность;
  - •самостоятельно определять причины своего успеха или неуспеха и находить способы выхода из ситуации неуспеха;
  - •ретроспективно определять, какие действия по решению
- учебной задачи или параметры этих действий привели к полу-чению имеющегося продукта учебной деятельности;
- •демонстрировать приемы регуляции психофизиологических/эмоциональных состояний для достижения эффекта успокоения (устранения эмоциональной напряженности), эффекта

восстановления (ослабления проявлений утомления), эффекта активизации (повышения психофизиологической реактивности).

Познавательные УУД

- 6. Умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации, устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное, по аналогии) и делать выводы. Обучающийся сможет:
- •подбирать слова, соподчиненные ключевому слову, определяющие его признаки и свойства;
- •выстраивать логическую цепочку, состоящую из ключевого слова и соподчиненных ему слов;
- •выделять общий признак двух или нескольких предметов или явлений и объяснять их сходство;
- •объединять предметы и явления в группы по определенным признакам, сравнивать, классифицировать и обобщать факты и явления;
  - •выделять явление из общего ряда других явлений;
- •определять обстоятельства, которые предшествовали возникновению связи между явлениями, из этих обстоятельств выделять определяющие, способные быть причиной данного явления, выявлять причины и следствия явлений;
- •строить рассуждение от общих закономерностей к частным явлениям и от частных явлений к общим закономерностям;
- •строить рассуждение на основе сравнения предметов и явлений, выделяя при этом общие признаки;
  - •излагать полученную информацию, интерпретируя ее в контексте решаемой задачи;

- •самостоятельно указывать на информацию, нуждающуюся в проверке, предлагать и применять способ проверки достоверности информации;
  - •вербализовать эмоциональное впечатление, оказанное на него источником;
- •объяснять явления, процессы, связи и отношения, выявляемые в ходе познавательной и исследовательской деятельности (приводить объяснение с изменением формы представления; объяснять, детализируя или обобщая; объяснять с задан-ной точки зрения);
- •выявлять и называть причины события, явления, в том числе возможные / наиболее вероятные причины, возможные последствия заданной причины, самостоятельно осуществляя причинно-следственный анализ;
- •делать вывод на основе критического анализа разных точек зрения, подтверждать вывод собственной аргументацией или самостоятельно полученными данными.
  - 7. Умение создавать, применять и преобразовывать знаки
- и символы, модели и схемы для решения учебных и познавательных задач. Обучающийся сможет:
  - •обозначать символом и знаком предмет и/или явление;
  - •определять логические связи между предметами и/или
  - явлениями, обозначать данные логические связи с помощью знаков в схеме;
  - •создавать абстрактный или реальный образ предмета и/или явления;
  - •строить модель/схему на основе условий задачи и/или способа ее решения;
- •создавать вербальные, вещественные и информационные модели с выделением существенных характеристик объекта для определения способа решения задачи в соответствии с ситуацией;
- •преобразовывать модели с целью выявления общих законов, определяющих данную предметную область;
- •переводить сложную по составу (многоаспектную) информацию из графического или формализованного (символьного) представления в текстовое, и наоборот;
- •строить схему, алгоритм действия, исправлять или восстанавливать неизвестный ранее алгоритм на основе имеющегося знания об объекте, к которому применяется алгоритм;
  - •строить доказательство: прямое, косвенное, от противного;
- •анализировать/рефлексировать опыт разработки и реализации учебного проекта, исследования (теоретического, эмпирического) на основе предложенной проблемной ситуации, поставленной цели и/или заданных критериев оценки продукта/результата.
  - 8. Смысловое чтение. Обучающийся сможет:
- •находить в тексте требуемую информацию (в соответствии с целями своей деятельности);
- •ориентироваться в содержании текста, понимать целостный смысл текста, структурировать текст;
  - •устанавливать взаимосвязь описанных в тексте событий, явлений, процессов;
  - •резюмировать главную идею текста;
  - •критически оценивать содержание и форму текста.
- 9. Формирование и развитие экологического мышления, умение применять его в познавательной, коммуникативной, социальной практике и профессиональной ориентации. Обучающийся сможет:
  - •определять свое отношение к природной среде;
  - •анализировать влияние экологических факторов на среду обитания живых организмов;
  - •проводить причинный и вероятностный анализ экологических ситуаций;
- •прогнозировать изменения ситуации при смене действия одного фактора на действие другого фактора;
- •распространять экологические знания и участвовать в практических делах по защите окружающей среды;
- •выражать свое отношение к природе через рисунки, сочинения, модели, проектные работы.
- 10. Развитие мотивации к овладению культурой активного использования словарей и других поисковых систем. Обучающийся сможет:
  - •определять необходимые ключевые поисковые слова и запросы;

- •осуществлять взаимодействие с электронными поисковыми системами, словарями;
- •формировать множественную выборку из поисковых источников для объективизации результатов поиска;
  - •соотносить полученные результаты поиска со своей деятельностью.

Коммуникативные УУД

- 11. Умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками; работать индивидуально и в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов; формулировать, аргументировать и отстаивать свое мнение. Обучающийся сможет:
  - •определять возможные роли в совместной деятельности;
  - •играть определенную роль в совместной деятельности;
- •принимать позицию собеседника, понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;
- •определять свои действия и действия партнера, которые способствовали или препятствовали продуктивной коммуникации;
  - •строить позитивные отношения в процессе учебной и познавательной деятельности;
  - •корректно и аргументированно отстаивать свою точку
- зрения, в дискуссии уметь выдвигать контраргументы, перефразировать свою мысль (владение механизмом эквивалентных замен);
- •критически относиться к собственному мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;
  - •предлагать альтернативное решение в конфликтной ситуации;
  - •выделять общую точку зрения в дискуссии;
- •договариваться о правилах и вопросах для обсуждения в соответствии с поставленной перед группой задачей;
- •организовывать учебное взаимодействие в группе (определять общие цели, распределять роли, договариваться друг с другом и т. д.);
- •устранять в рамках диалога разрывы в коммуникации, обусловленные непониманием/неприятием со стороны собеседника задачи, формы или содержания диалога.
- 12. Умение осознанно использовать речевые средства в соответствии с задачей коммуникации для выражения своих чувств, мыслей и потребностей для планирования и регуляции своей деятельности; владение устной и письменной речью, монологической контекстной речью. Обучающийся сможет:
  - •определять задачу коммуникации и в соответствии с ней отбирать речевые средства;
- •отбирать и использовать речевые средства в процессе коммуникации с другими людьми (диалог в паре, в малой группе и т. д.);
- •представлять в устной или письменной форме развернутый план собственной деятельности;
- •соблюдать нормы публичной речи, регламент в монологе и дискуссии в соответствии с коммуникативной задачей;
- •высказывать и обосновывать мнение (суждение) и запрашивать мнение партнера в рамках диалога;
  - •принимать решение в ходе диалога и согласовывать его с собеседником;
- •создавать письменные «клишированные» и оригинальные тексты с использованием необходимых речевых средств;
- •использовать вербальные средства (средства логической связи) для выделения смысловых блоков своего выступления;
- •использовать невербальные средства или наглядные материалы, подготовленные/отобранные под руководством учителя;
- •делать оценочный вывод о достижении цели коммуникации непосредственно после завершения коммуникативного

контакта и обосновывать его.

13. Формирование и развитие компетентности в области ис-пользования информационно-коммуникационных технологий

(далее — ИКТ). Обучающийся сможет:

- •целенаправленно искать и использовать информационные ресурсы, необходимые для решения учебных и практических задач с помощью средств ИКТ;
- •выбирать, строить и использовать адекватную информационную модель для передачи своих мыслей средствами естественных и формальных языков в соответствии с условиями коммуникации;
- •выделять информационный аспект задачи, оперировать данными, использовать модель решения задачи;
- •использовать компьютерные технологии (включая выбор адекватных задаче инструментальных программно-аппаратных средств и сервисов) для решения информационных и коммуникационных учебных задач, в том числе: вычисление, написание писем, сочинений, докладов, рефератов, создание презентаций и др.;
  - •использовать информацию с учетом этических и правовых норм;
- •создавать информационные ресурсы разного типа и для разных аудиторий, соблюдать информационную гигиену и правила информационной безопасности.

Предметные результатыобучения физике в основной школе.

Выпускник научится:

- •соблюдать правила безопасности и охраны труда при ра-боте с учебным и лабораторным оборудованием;
- •понимать смысл основных физических терминов: физиче-ское тело, физическое явление, физическая величина, едини-цы измерения;
- •распознавать проблемы, которые можно решить при по-мощи физических методов; анализировать отдельные этапы

проведения исследований и интерпретировать результаты на-блюдений и опытов;

•ставить опыты по исследованию физических явлений или физических свойств тел без использования прямых измерений; при этом формулировать проблему/задачу учебного эксперимента; собирать установку из предложенного оборудования; проводить опыт и формулировать выводы.

Примечание. При проведении исследования физических явлений измерительные приборы используются лишь как датчики измерения физических величин. Записи показаний прямых измерений в этом случае не требуется;

- •понимать роль эксперимента в получении научной информации;
- •проводить прямые измерения физических величин: время, расстояние, масса тела, объем, сила, температура, атмосферное давление, влажность воздуха, напряжение, сила тока, радиационный фон (с использованием дозиметра); при этом выбирать оптимальный способ измерения и использовать простейшие методы оценки погрешностей измерений;
- •проводить исследование зависимостей физических величин с использованием прямых измерений: при этом конструировать установку, фиксировать результаты полученной зависимости физических величин в виде таблиц и графиков, делать выводы по результатам исследования;
- •проводить косвенные измерения физических величин: при выполнении измерений собирать экспериментальную установку, следуя предложенной инструкции, вычислять значение величины и анализировать полученные результаты с учетом заданной точности измерений;
- •анализировать ситуации практико-ориентированного характера, узнавать в них проявление изученных физических явлений или закономерностей и применять имеющиеся знания для их объяснения;
- •понимать принципы действия машин, приборов и технических устройств, условия их безопасного использования в повседневной жизни;
- •использовать при выполнении учебных задач научно-популярную литературу о физических явлениях, справочные материалы, ресурсы Интернета.

#### 2. СОДЕРЖАНИЕ КУРСА.

#### Физика и ее роль в познании окружающего мира

Физика — наука о природе. Физические тела и явления. Физические свойства тел. Наблюдение и описание физических явлений. Физический эксперимент. Моделирование явлений и объектов природы. Физические величины. Измерения физических величин: длины, времени, температуры. Физические приборы. Международная система единиц. Точность и погрешность измерений. Физические законы и закономерности. Физика и техника. Научный метод познания. Роль физики

в формировании естественно-научной грамотности.

#### Механические явления

Материальная Механическое движение. точка как модель физического Относительность механического движения. Геоцентрическая и гелиоцентрическая системы мира. Система отсчета. Физические величины, необходимые для описания движения, и взаимосвязь между ними (путь, перемещение, скорость, ускорение, время движения). равноускоренное прямолинейное движение. Графики кинематических величин от времени при равномерном и равноускоренном движении. Равномерное движение по окружности. Инерция. Инертность тел. Взаимодействие тел. Масса тела. Измерение массы тела. Плотность вещества. Сила. Единицы силы. Инерциальная система отсчета. Законы Ньютона. Свободное падение тел. Сила тяжести. Закон всемирного тяготения. Искусственные спутники Земли. Сила упругости. Закон

Гука. Вес тела. Невесомость. Связь между силой тяжести и массой тела. Сила тяжести на других планетах. Динамометр. Сложение двух сил, направленных по одной прямой. Равнодействующая сил. Сила трения. Трение скольжения. Трение покоя. Трение в природе и технике. Искусственные спутники Земли. Первая космическая скорость. Импульс. Закон сохранения импульса. Реактивное движение. Механическая работа. Мощность. Энергия. Потенциальная и кинетическая энергия. Превращение одного вида механической энергии в другой. Закон сохранения полной механической энергии.

Простые механизмы. Условия равновесия твердого тела, имеющего закрепленную ось движения. Момент силы. Центр тяжести тела. Рычаг. Равновесие сил на рычаге. Рычаги в технике, быту и природе. Подвижные и неподвижные блоки. Равенство работ при использовании простых механизмов («золотое правило» механики). Виды равновесия. Коэффициент полезного действия механизма.

Давление. Давление твердых тел. Единицы измерения давления. Способы изменения давления. Давление газа. Объяснение давления газа на основе молекулярно-кинетических представлений. Передача давления газами и жидкостями. Закон Паскаля. Давление жидкости на дно и стенки сосуда. Сообщающиеся сосуды. Атмосферное давление. Методы измерения атмосферного давления. Опыт Торричелли. Барометр-анероид,

манометр. Атмосферное давление на различных высотах. Гидравлические механизмы (пресс, насос). Поршневой жидкостный насос. Давление жидкости и газа на погруженное в них

тело. Закон Архимеда. Условия плавания тел. Плавание тел

и судов. Воздухоплавание.

Колебательное движение. Колебания груза на пружине. Свободные колебания. Колебательная система. Маятник. Амплитуда, период, частота колебаний. *Гармонические колебания*.

Превращение энергии при колебательном движении. Затухающие колебания. Вынужденные колебания. Резонанс. Распространение колебаний в упругих средах. Поперечные и продольные волны. Длина волны. Связь длины волны со скоростью ее

распространения и периодом (частотой). Звуковые волны. Скорость звука. Высота, тембр и громкость звука. Эхо. Звуковой резонанс.

#### Тепловые явления

Строение вещества. Атомы и молекулы. Опыты, доказывающие атомное строение вещества. Тепловое движение атомов и молекул. Броуновское движение. Диффузия в газах, жидкостях и твердых телах. Взаимодействие частиц вещества. Агрегатные состояния вещества. Модели строения твердых тел, жидкостей и газов. Объяснение свойств газов, жидкостей и твердых тел на основе молекулярно-кинетических представлений.

Тепловое движение. Тепловое равновесие. Температура. Внутренняя энергия. Работа и теплопередача. Теплопроводность. Конвекция. Излучение. Примеры теплопередачи в природе и технике. Количество теплоты. Удельная теплоемкость. Расчет количества теплоты при теплообмене. Удельная теплота сгорания топлива. Закон сохранения и превращения энергии в механических и тепловых процессах. Плавление и отвердевание кристаллических тел. Удельная теплота плавления. Испарение и конденсация. Кипение. Зависимость температуры кипения от давления. Удельная теплота парообразования. Влажность воздуха. Объяснение изменения агрегатного состояния вещества на основе молекулярно-кинетических представлений. Работа газа при расширении. Преобразование энергии в тепловых машинах. Двигатель внутреннего сгорания. Паровая турбина. КПД теплового двигателя. Экологические проблемы использования тепловых машин.

#### Электромагнитные явления

Электризация физических тел. Два рода электрических зарядов. Взаимодействие заряженных тел. Делимость электрического заряда. Электрон. Закон сохранения электрического заряда. Проводники, диэлектрики и полупроводники.

Электроскоп. Электрическое поле как особый вид материи. Строение атома. *Напряженность электрического поля*. Действие электрического поля на электрические заряды. Конденсатор. Энергия электрического поля конденсатора.

Электрический ток. Источники тока. Электрическая цепь и ее составные части. Направление и действия электрического тока. Носители электрических зарядов в металлах. Сила тока

Электрическое напряжение. Электрическое сопротивление проводников. Единицы сопротивления. Зависимость силы тока

от напряжения. Закон Ома для участка цепи. Удельное сопротивление. Реостаты. Последовательное и параллельное соединение проводников. Работа электрического поля по перемещению электрических зарядов. Мощность электрического тока.

Нагревание проводников электрическим током. Закон Джоуля—Ленца. Электрические нагревательные и осветительные приборы. Короткое замыкание. Правила безопасности при работе с электроприборами.

Опыт Эрстеда. Магнитное поле. Индукция магнитного поля. Магнитное поле прямого тока. Магнитное поле катушки с током. Постоянные магниты. Магнитное поле постоянных магнитов. Магнитное поле Земли. Взаимодействие магнитов. Действие магнитного поля на проводник с током. Электрический двигатель. Однородное и неоднородное магнитное поле. Правило буравчика. Обнаружение магнитного поля. Действие магнитного поля на проводник с током и движущуюся заряженную частицу. Сила Ампера и сила Лоренца. Правило левой руки. Магнитный поток. Опыты Фарадея. Электромагнитная индукция. Направление индукционного тока. Правило Ленца. Явление самоиндукции.

Электромагнитные колебания. Колебательный контур. Переменный ток. Генератор переменного тока. Преобразования энергии в электрогенераторах. Трансформатор. Передача электрической энергии на расстояние. Электромагнитное поле. Электромагнитные волны. Скорость распространения электромагнитных волн. Влияние электромагнитных излучений на живые организмы. Получение электромагнитных колебаний. Принципы радиосвязи и телевидения.

Электромагнитная природа света. Скорость света. Источники света. Прямолинейное распространение света. Отражение света. Закон отражения света. Плоское зеркало. Изображение предмета в зеркале. Преломление света. Закон преломления света. Линзы. Фокусное расстояние

линзы. Оптическая сила линзы. Изображения, даваемые линзой. Глаз как оптическая система. Оптические приборы. Преломление света. Показатель преломления. Дисперсия света. Цвета тел. Спектрограф и спектроскоп. Типы оптических спектров. *Спектральный анализ*.

#### Квантовые явления

Строение атомов. Планетарная модель атома. Поглощение и испускание света атомами. Происхождение линейчатых спектров. Опыты Резерфорда.

Радиоактивность как свидетельство сложного строения атомов. Альфа-, бета- и гамма-излучения. Радиоактивные превращения атомных ядер. Сохранение зарядового и массового чисел при ядерных реакциях. Период полураспада. Закон радиоактивного распада. Экспериментальные методы исследования частиц. Протонно-нейтронная модель ядра. Физический смысл зарядового и массового чисел. Изотопы. Правила смещения для альфа- и бета-распада при ядерных реакциях. Энергия связи частиц в ядре. Деление ядер урана. Цепная реакция. Ядерная энергетика. Экологические проблемы работы атомных электростанций. Дозиметрия. Влияние радиоактивных излучений на живые организмы. Термоядерная реакция. Источники энергии Солнца и звезд.

#### Строение и эволюция Вселенной

Геоцентрическая и гелиоцентрическая системы мира. Состав, строение и происхождение Солнечной системы. Физическая природа небесных тел Солнечной системы. Планеты и малые тела Солнечной системы. Строение, излучение и эволюция Солнца и звезд. Строение и эволюция Вселенной. Гипотеза Большого взрыва.

#### Лабораторные работы

- 1. Определение цены деления измерительного прибора.
- 2. Измерение размеров малых тел.
- 3. Измерение массы тела на рычажных весах.
- 4. Измерение объема тела.
- 5. Определение плотности твердого тела.
- 6. Градуирование пружины и измерение сил динамометром.
- 7. Выяснение зависимости силы трения скольжения от площади соприкасающихся тел и прижимающей силы.
  - 8. Определение выталкивающей силы, действующей на погруженное в жидкость тело.
  - 9. Выяснение условий плавания тела в жидкости.
  - 10. Выяснение условия равновесия рычага.
  - 11. Определение КПД при подъеме тела по наклонной плоскости.
  - 12. Определение количества теплоты при смешивании воды разной температуры.
  - 13. Определение удельной теплоемкости твердого тела.
  - 14. Определение относительной влажности воздуха.
  - 15. Сборка электрической цепи и измерение силы тока в ее различных участках.
  - 16. Измерение напряжения на различных участках электрической цепи.
  - 17. Измерение силы тока и его регулирование реостатом.
  - 18. Измерение сопротивления проводника при помощи амперметра и вольтметра.
  - 19. Измерение мощности и работы тока в электрической пампе
  - 20. Сборка электромагнита и испытание его действия.
  - 21. Изучение электрического двигателя постоянного тока (на модели).
  - 22. Изучение свойств изображения в линзах.
  - 23. Исследование равноускоренного движения без начальной скорости.
  - 24. Измерение ускорения свободного падения.
- 25. Исследование зависимости периода и частоты свободных колебаний маятника от длины его нити.
  - 26. Изучение явления электромагнитной индукции.
  - 27. Наблюдение сплошного и линейчатых спектров испускания.

- 28. Измерение естественного радиационного фона дозиметром.
- 29. Изучение деления ядра атома урана по фотографии треков.
- 30. Изучение треков заряженных частиц по готовым фотографиям.

## 3. Тематическое планирование

| 7 класс (68 ч, 2 ч в неделю)                   |                                                                         |
|------------------------------------------------|-------------------------------------------------------------------------|
| Основное содержание Основные виды учебной      | Основное содержание Основные виды учебной                               |
| деятельности                                   | деятельности                                                            |
| Физика и ее роль в познании                    | -Объяснять, описывать физические явления,                               |
| окружающего мира (4 ч)                         | отличать физические явления от химических;                              |
| Физика — наука о природе. Физические явления,  | -проводить наблюдения физических явлений,                               |
| вещество, тело, материя. Физические свойства   | анализировать и классифицировать их;                                    |
| тел. Основные методы изучения, их различие.    | -различать методы изучения физики;                                      |
| Понятие о физической величине. Международная   | -измерять расстояния, промежутки времени,                               |
| система единиц. Простейшие измерительные       | температуру;                                                            |
| приборы. Цена деления шкалы прибора.           | -обрабатывать результаты измерений;                                     |
| Нахождение погрешности измерения.              | -переводить значения физических величин в СИ;                           |
| Современные достижения науки. Роль физики      | -выделять основные этапы развития физической                            |
| и ученых нашей страны в развитии технического  | науки и называть имена выдающихся                                       |
| прогресса. Влияние технологических процессов   | ученых;                                                                 |
| на окружающую среду.                           | -определять цену деления шкалы измеритель-                              |
| Лабораторная работа                            | ного прибора;                                                           |
| 1. Определение цены деления измерительного     | -представлять результаты измерений в виде                               |
| прибора.                                       | таблиц;                                                                 |
|                                                | -записывать результат измерения с учетом                                |
|                                                | погрешности;                                                            |
| Темы проектов <sup>1</sup>                     | -Объяснять опыты, подтверждающие                                        |
| «Физические приборы вокруг нас», «Физические   | молекулярное строение вещества, опыты по                                |
| явления в художественных произведениях         | обнаружению сил взаимного притяжения и                                  |
| (А. С. Пушкина, М. Ю. Лермонтова, Е. Н.        | отталкивания                                                            |
| Носо-ва, Н. А. Некрасова)», «Нобелевские       | молекул;                                                                |
| лауреаты в области физики»                     | -объяснять: физические явления на основе                                |
| Агрегатные состояния вещества. Особенности     | знаний о строении вещества, броуновское                                 |
| трех агрегатных состояний вещества. Объяснение | движение, основные свойства молекул, явление                            |
|                                                | диффузии, зависимость скорости протекания                               |
| свойств газов, жидкостей и твердых тел на      | диффузии от температуры тела;<br>-схематически изображать молекулы воды |
| основе молекулярного строения.                 | -схематически изооражать молекулы воды<br>и кислорода                   |
| Зачет                                          | сравнивать размеры молекул разных веществ:                              |
| по теме «Первоначальные сведения о строении    | воды, воздуха;                                                          |
| вещества».                                     | -анализировать результаты опытов по движе-нию                           |
| Лабораторная работа                            | молекул и диффузии;                                                     |
| 2. Измерение размеров малых тел.               | - приводить примеры диффузии в окружающем                               |
| Темы проектов                                  | мире, практического использования свойств                               |
| «Зарождение и развитие научных взглядов        | веществ в различных агрегатных состояниях;                              |
| о строении вещества», «Диффузия вокруг нас»,   | -наблюдать и исследовать явление смачивания                             |
| «Удивительные свойства воды»                   | и несмачивания тел, объяснять данные явления                            |
|                                                | на основе знаний о взаимодействии молекул;                              |
|                                                | - доказывать наличие различия в молекулярном                            |
|                                                | строении твердых тел, жидкостей и газов;                                |

<sup>&</sup>lt;sup>1</sup> Возможные формы выполнения: доклад, сопровождаемый презентацией, компьютерная анимация, таблица, реферат, кроссворд, фотоальбом, изготовление модели, макета, приспо-собления, подготовка ролевой игры, викторины, демонстрация опытов.

## - применять полученные знания при решении задач;

- измерять размеры малых тел методом рядов, различать способы измерения размеров малых тел:
- -представлять результаты измерений в виде таблиц;
- -работать в групп

#### Взаимодействие тел (23 ч)

Механическое движение. Траектория движения тела, путь. Основные единицы пути в СИ. Равномерное и неравномерное движение. Относительность движения.

Скорость равномерного и неравномерного движения. Векторные и скалярные физические величины. Определение скорости. Определение пути, пройденного телом при равномерном движении, по формуле и с помощью графиков. Нахождение времени движения тел.

Явление инерции. Проявление явления инерции в быту и технике. Изменение скорости тел при взаимодействии. Масса. Масса — мера инертности тела. Инертность — свойство тела. Определение массы тела в результате его взаимодействия с другими телами. Выяснение условий равновесия учебных весов. Плотность вещества. Изменение плотности одного и того же вещества в зависимости от его агрегатного состояния. Определение массы тела по его объему и плотности, объема тела по его массе и плотности.

Изменение скорости тела при действии на него других тел. Сила — причина изменения скорости движения, векторная физическая величина. Графическое изображение силы. Сила — мера взаимодействия тел. Сила тяжести. Наличие тяготения между всеми телами. Зависимость силы тяжести от массы тела. Свободное падение тел. Возникновение силы упругости. Природа силы упругости. Опытные подтверждения сущетвования силы упругости. Закон Гука. Вес тела.

Вес тела — векторная физическая величина. Отличие веса тела от силы тяжести. Сила тяжести на других планетах.

Изучение устройства динамометра. Измерения сил с помощью динамометра. Равнодействующая сил. Сложение двух сил, направленных по одной прямой одном направлении противоположных. Графическое изображение равнодействующей двух сил. Сила трения. Измерение силы трения скольжения. Сравнение силы трения скольжения с силой трения качения. Сравнение силы трения с весом тела. Трение Способы покоя. Роль трения В технике.

- Определять: траекторию движения тела; тело, относительно которого происходит движение; скорость среднюю движения заводного автомобиля; путь, пройденный за данный промежуток времени; скорость тела по графику зависимости пути равномерного движения от времени; плотность вещества; массу тела по его объему и плотности; силу тяжести по известной массе тела; массу тела по заданной силе тяжести; зависимость изменения скорости тела приложенной силы;
- -доказывать относительность движения тела; -рассчитывать скорость тела при равномерном и среднюю скорость при неравномерном движении, силу тяжести и вес тела, равнодействующую двух сил;
- -различать равномерное и неравномерное движение;
- -графически изображать скорость, силу и точку ее приложения;
- -находить связь между взаимодействием тел и скоростью их движения;
- -устанавливать зависимость изменения скорости движения тела от его массы;
- -различать инерцию и инертность тела;
- определять плотность вещества;
- -рассчитывать силу тяжести и вес тела;
- -выделять особенности планет земной группы и планет-гигантов (различие и общие свойства);
- -приводить примеры взаимодействия тел,
- приводящего к изменению их скорости; проявления явления инерции в быту; проявления тяготения в окружающем мире; видов деформации, встречающихся в быту; различных видов трения;
- -называть способы увеличения и уменьшения силы трения;
- -рассчитывать равнодействующую двух сил; -переводить основную единицу пути в км, мм, см, дм; основную единицу массы в т, г, мг; значение плотности из кг/м 3в г/см<sup>3</sup>; выражать скорость в км/ч, м/с;
- анализировать табличные данные;
- -работать с текстом учебника, выделять главное, систематизировать и обобщать полученные сведения о массе тела;
- -проводить эксперимент по изучению

увеличения и уменьшения трения.

Контрольные работы

по темам «Механическое движение», «Масса», «Плотность вещества»;

по темам «Вес тела», «Графическое изображение сил», «Силы», «Равнодействующая сил».

#### Лабораторные работы

- 3. Измерение массы тела на рычажных весах.
- 4. Измерение объема тела.
- 5. Определение плотности твердого тела.
- 6. Градуирование пружины и измерение сил динамометром.
- 7. Выяснение зависимости силы трения скольжения от площади соприкасающихся тел и прижимающей силы.

#### Темы проектов

«Инерция в жизни человека», «Плотность веществ на Земле и планетах Солнечной системы», «Сила в наших руках», «Вездесущее трение»

# Давление твердых тел, жидкостей и газов (21 ч)

Давление. Формула для нахождения давления. Единицы давления. Выяснение способов изменения давления в быту и технике. Причины возникновения давления газа. Зависимость давления газа данной массы от объема и температуры.

Различия между твердыми телами, жидкостями и газами. Передача давления жидкостью и газом. Паскаля. Наличие давления внутри жидкости. Увеличение давления с глубиной погружения. Обоснование расположения поверхности однородной жидкости сообщающихся сосудах на одном уровне, а жидкостей с разной плотностью — на разных уровнях. Устройство и действие шлюза. Атмосферное давление. Влияние атмосферного давления на живые организмы. Явления, под тверждающие существование атмосферного давления. Определение атмосферного давления. Опыт Торричелли. Расчет силы, с которой атмосфера давит на окружающие предметы. Знакомство с работой и устройством барометраанероида. Использование его метеорологических наблюдениях. Атмосферное давление на различных высотах.

Устройство и принцип действия открытого жидкостного и металлического манометров. Принцип действия поршневого жидкостного насоса и гидравлического пресса. Физические основы работы гидравлического пресса. Причины возникновения выталкивающей силы.

механического движения, сравнивать опытные данные;

- -экспериментально находить равнодействущую двух сил;
- применять знания к решению задач;
- -измерять объем тела с помощью измерительного цилиндра; плотность твердого тела с помощью весов и измерительного цилиндра; силу трения с помощью динамометра;
- -взвешивать тело на учебных весах и с их помощью определять массу тела;
- -пользоваться разновесами;
- -градуировать пружину;
- -получать шкалу с заданной ценой деления;
- -анализировать результаты измерений и вычислений, делать выводы;
- представлять результаты измерений и вычислений в виде таблиц;
- -работать в группе

-Приводить примеры, показывающие зависимость действующей силы от площади опоры;

Подтверждающие существование выталкивающей силы; увеличения площади опоры для уменьшения давления; сообщающихся сосудов в быту, применения поршневого жидкостного насоса и гидравлического пресса, плавания различных тел и живых организмов, плавания и воздухоплавания;

- вычислять давление по известным массе и объему, массу воздуха, атмосферное давление, силу Архимеда, выталкивающую силу по данным эксперимента;
- выражать основные единицы давления в кПа, гПа;
- отличать газы по их свойствам от твердых тел и жидкостей;
- —объяснять: давление газа на стенки сосуда на основе теории строения вещества, причину передачи давления жидкостью или газом во все стороны одинаково, влияние атмосферного давления на живые организмы, измерение атмосферного давления с помощью трубки Торричелли, изменение атмосферного давления по мере

увеличения высоты над уровнем моря, причины плавания тел, условия плавания судов, изменение осадки судна;

—анализировать результаты эксперимента по изучению давления газа, опыт по передаче давления жидкостью, опыты с ведерком Архимеда;

Природа выталкивающей силы. Закон Архимеда. Плавание тел. Условия плавания тел. Зависимость глубины погружения тела в жидкость от его плотности. Физические основы плавания

судов и воздухоплавания. Водный и воздушный транспорт.

Кратковременные контрольные работы по теме «Давление твердого тела»; по теме «Давление в жидкости и газе. Закон Паскаля».

Зачет

по теме «Давление твердых тел, жидкостей и газов»

Лабораторные работы

- 8. Определение выталкивающей силы, действующей на погруженное в жидкость тело.
- 9. Выяснение условий плавания тела в жидкости. Темы проектов
- «Тайны давления», «Нужна ли Земле атмосфера», «Зачем нужно измерять давление», «Выталкивающая сила»

- выводить формулу для расчета давления жидкости на дно и стенки сосуда, для определения выталкивающей силы;
- -устанавливать зависимость изменения давления в жидкости и газе с изменением глубины;
- -сравнивать атмосферное давление на различных высотах от поверхности Земли;
- наблюдать опыты по измерению атмосферного давления и делать выводы;
- различать манометры по целям использования;
- устанавливать зависимость между изменением уровня жидкости в коленах манометра и давлением;
- -доказывать, основываясь на законе Паскаля, существование выталкивающей силы, действующей на тело;
- -указывать причины, от которых зависит сила Архимеда;
- -работать с текстом учебника, анализировать формулы, обобщать и делать выводы;
- -составлять план проведения опытов;
- -проводить опыты по обнаружению атмосферного давления, изменению атмосферного давления с высотой, анализировать их результаты и делать выводы;
- -проводить исследовательский эксперимент: по определению зависимости давления от действующей силы, с сообщающимися сосудами, анализировать результаты и делать выводы;
- -конструировать прибор для демонстрации гидростатического давления;
- —измерять атмосферное давление с помощью барометра-анероида, давление с помощью маноетра;
- применять знания к решению задач;
- —опытным путем обнаруживать выталкивающее действие жидкости на погруженное в нее тело; выяснить условия, при которых тело плавает, всплывает, тонет в жидкости;

#### —работать в группе

#### Работа и мощность. Энергия (13 ч)

Механическая работа, ее физический смысл.

Мощность — характеристика скорости выполнения работы. Простые механизмы. Рычаг. Усло-вия равновесия рычага. Момент силы — физическая величина, характеризующая действие силы.

Правило моментов. Устройство и действие рычажных весов.

Подвижный и неподвижный блоки — простые механизмы. Равенство работ при использовании простых механизмов. «Золотое правило» механики. Центр тяжести тела. Центр тяжести различных твердых тел. Статика — раздел механики,

| изучающий условия равновесия тел. Условия   |
|---------------------------------------------|
| равновесия тел.                             |
| Понятие о полезной и полной работе. КПД     |
| механизма. Наклонная плоскость. Определение |
| КПД наклонной плоскости.                    |
| Энергия. Потенциальная энергия. Зависимость |
| потенциальной энергии тела, поднятого над   |
| землей, от его массы и высоты подъема.      |
| Кинетинческая энергия. Зависимость          |
| кинетической энергии от массы тела и его    |
| скорости. Переход                           |
| одного вида механической энергии в другой.  |
| Параход оцерени от одного тала и пругому    |

#### СОГЛАСОВАНО

протокол заседания методического объединения учителей математики, физики и информатики МАОУ СОШ № 99 от 30.08.2017 года №1

Дебёлова И.С.

СОГЛАСОВАНО Заместитель директора по УВР Шорохова Е.В.

Подпись